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Abstract 

We discuss logic and specification language of a program 
synthesizer for Java intended for dynamic synthesis of 
services. We introduce metainterfaces as logical 
specifications of classes. They can be used in two ways: as 
specifications of computational usage of classes or as 
specifications of new classes composed from metaclasses – 
the classes already supplied with metainterfaces. The 
specification language used has a straightforward translation 
into a restricted first -order constructive logic. New 
programs are composed by a deductive synthesis method 
close to the structural synthesis of programs. An example of 
composition of a transaction service is presented. 

Introduction  

We discuss logic and specification language proposed in 
an ongoing project aimed at the development of a program 
synthesizer for Java intended for dynamic synthesis of 
network services. A prototype of the synthesizer has 
already shown good performance. In this project, we 
prioritize the efficiency of proof search before the 
generality of the logical language. The method under 
consideration is deductive program synthesis. In essence, it 
is an extension of the structural program synthesis (SSP) 
described already in (Mints and Tyugu 1982), and we call 
it ESSP – extended structural synthesis of programs. 

Our discussion is related to  two quite different 
knowledge domains: software composition and logic. In 
the introductiuon we briefly look at the features of 
software that must be representable by the logic of the 
synthesizer. We explain here as well which features of 
logic will be used to support the required software features, 
and show how the complexity of proof search depends on 
the features covered by the logic. As expected, supporting 
all desirable features of the software composition leads in 
principle to exponential time complex ity of the proof 
search. However, our proof search strategy enables us to 
construct a coarse-grained proof quite efficiently using 
admissible inference rules that correspond to actual 
applications of functions and control structures in 
computations. We are  still quite satisfied with the 
efficiency of the application of the synthesizer to practical 
problems.  

Our synthesis method is aimed at composing software 
from functions, including higher-order functions (which 
are taking automatically synthesized functi ons as 
arguments, and can so represent control structures, e.g. 
loops and conditional statements). Higher -orderness 
guarantees the generality of the method in principle – one 
can preprogram a small set of higher order functions that 
are sufficient for representing any computable function. In 
practice, we use a specific set of preprogrammed functions 
for every problem domain. These functions are 
implemented as methods of classes written in Java. We 
distinguish three kinds of building blocks used in the 
software synthesis process: 

� The smallest building blocks (we call them also 
modules) are methods; they are selected and 
connected automatically by the synthesizer.  

� The next size blocks are Java classes representing 
particular concepts. 

� The largest are metaclasses that represent independent 
software components and are specified declaratively. 

The software features we are going to express in logic 
are the following: 

� Dataflow between pre-programmed modules 
� Order of application of modules (control variables) 
� Hierarchical data structures 
� Usage of pre -programmed control structures 

(subtasks)  
� Alternative outcome of modules, in particular 

exception handling 
� Implicit linking of modules 
1. Dataflow. Dataflow dependencies between pre -
programmed functions can be expressed simply by 
implications, where for each function there is an 
implication. On its left hand side is a conjunction of 
propositions stating for each input variable (for each 
argument) that the input is available and on the right had 
side is a conjunction of propositions stating for each output 
variable that the output is computed. This conforms with 
the intuitionistic realizability of implications as functions 
and propositional variables as data. Consider the following 
example. Let f and g be modules with input variables a, b 
respectively, and output variables b, c respectively. Then 
the logical description of the dataflow will be AB⊃  and 
BC⊃  where A, B, C are propositions stating availability 



 

(computability) of variables a, b, c. Computability of c 
from a follows from derivability of C from A. 
2. Order of module application . We are sometimes 
confronted with the situation where the order of module 
application matters, but this is not determined by dataflow. 
To overcome this problem, a logic must, in addition, 
include means to force a certain order of module 
application. For instance, let the modules f and g from the 
example above be two methods of a class D implemented 
in an object oriented programming language. Before these 
two methods can be applied, a constructor d of the class D 
must create an object of class D. By adding a proposition, 
let’s say D (as an additional conjunct) to the right hand 
side of the implication specifying the constructor d, and 
adding the same proposition to the left hand sides of the 
implications specifying f and g, the correct order of 
application is forced on the modules. Fortunately, this does 
not require any extension of the logic compared to the 
logic of dataflow. 
3. Hierarchical data s tructures. Hierarchical data 
structures can be specified by means of structural relations 
that bind a structure, e.g. x with its components, say 

1,, kxx � . The computational possibilities of this relation 

can be expressed by the implications 1 kXXX∧∧⊃�  and 

iXX⊃ , for 1,,ik= �  where X and Xi denote again the 

computability of x and xi respectively. This does not 
require extension of the logic used for expressing the 
dataflow. (Object-oriented environments may require some 
additional computations for obtaining a structured value, 
e.g. application of a constructor of a proper class.) 
4. Usage of predefined control structures. As we have 
noted already, some building blocks that have to be  
specified are higher order functions that take other 
functions as input. A functional input f of a function g can 
be specified by an implication on the left hand side of the 
implication specifying the function g. For instance, the 
formula ()IANS⊃∧⊃  specifies a function g with 
arguments f and n that computes s, where the function f can 
be any function computing a from i that is composed from 
given blocks. (The capital letters again denote the 
computability of the variables denoted by the respective 
small letters.) Accepting nested implications as formulae is 
an essential extension of the logical language. Indeed, any 
propositional formula of the intuitionistic logic can be 
encoded by formulae of this language so that its 
derivability can be  checked in a theory within this 
implicative language, see for instance (Mints and Tyugu 
1982). 
5. Alternative outcome of modules. Even considering only 
dataflow, we can meet a situation where a module may 
produce one of several alternative outputs every time it is 
applied (represented by branching in a dataflow). In 
particular, this is the case with exception handling – we 
expect that a normal output will be produced, but must be 
ready to handle exceptions, if they appear. This requires 

introduction of dis junctions on the right hand side of 
implications. 
6. Implicit selections and linking of software components. 
Our intention is to use the synthesizer for putting together 
large programs from components. We mean by a 
component not just a function, but also a  software 
configuration providing some useful functionality. We 
expect to have libraries of components supporting various 
problem domains, like packages in Java. So the problem of 
automatic selection components appears. This requires a 
language where we can state that a component with 
particular properties exists or, vice versa, it may be 
required. Hence, we need existential and universal 
quantifiers. However, we can restrict the usage of 
quantifiers so that we will not need the whole power of 
first order logic. 

Extended structural synthesis covers the features 
discussed above as follows: 

� Non-nested implications of conjunctions of 
propositions cover 1, 2, and 3, 

� Nested implications cover also 4, 
� Disjunctions cover 5, but can be reduced to nested 

implications, 
� Restricted first-order logic covers 6. 

The proof search for non-nested implications has linear 
time complexity. Adding nested implications gives us the 
general case of intuitionistic propositional logic, hence 
exponential time complexity in general; however, we can 
use a modal logic for nested implications and get simpler 
proof search, see (Mints 1991). In the case of first-order 
logic we use quantifiers in a very restricted way, and hope 
to keep the search manageable. 

We have chosen Java as the language we extend, 
because it is a widely used object -oriented language 
suitable for implementing services in a network. 
Components of services are represented as classes and 
interfaces. Special attention is paid to handling exceptions 
in Java in a logically sound  way. Also handling 
constructors requires special attention. This has required 
some extension of the logic used in (Lämmermann 2000). 
Considerable part of the presentation takes an example of 
synthesis of a banking service implemented in our project. 
This example is introduced gradually by presenting Java 
classes on various parts of the paper. 

Specifications as Metainterfaces 

On the specification language side we introduce 
metainterfaces as logical specifications of classes. They 
can be used in two ways: as  specifications of 
computational usage of classes or as specifications of new 
classes composed from classes already supplied with meta-
interfaces. A metainterface is a specification that: 

� Introduces a collection of interface variables  of a 
class. 



 

� Introduces axioms showing the possibilities of 
computing provided by methods of the class, in 
particular, which interface variables are computable 
from other variables under which conditions. 

� Introduces metavariables that connect implicitly 
different metainterfaces and reflect mutual needs of 
components on the conceptual level. 

Interface variables  are abstract variables that get 
implementations as class- or instance variables, only if 
they will be used in computations by a synthesized 
program. 

Axioms that we use are implications with preconditions 
for applying a method on the left- and postconditions on 
the right -hand side. Interface variables denote in 
preconditions that the variable must have a value before 
the method is applied, and in postconditon – that its value 
will be computed. (There are other kinds of subformulas in 
axioms that we are going to discuss later). For instance, 
having some class written in Java with two methods 
getExchangeRate  and getLocalCurrency  for 
calculating the exchange rate of a given currency and the 
local currency, we can introduce interface variables 
currency  for a source currency, localCurrency , and 
exchangeRate , for the local currency and exchange rate 
respectively, and declare an axiom that specifies how one 
can use calculation of exchange rate. Here is a fragment of 
the metainterface: these are interface variables: 
currency, localCurrency : String  
exchangeRate : float  

Here follows the specification of computability (the arrow 
-> is used in our language as an implication sign for 
convenience of typing): 
currency,localCurrency - > exchangeRate {getExchangeRate}  
- > localCurrency {getLocalCurrency}  

If we wish to specify that the local currency can be 
found from a class LocalCurrency , we can use a 
metavariable (LocalCurrency)  and replace the  
specification: 

- > localCurrency {getLocalCurrency}  by 
(LocalCurrency) - > localCurrency {assign}  

The last extension enables the synthesizer to detect 
automatically local currency that may depend on the 
location where the service will be used, if it is specified in 
some accessible metainterface (by unifying metavariables 
of different metainterfaces). The class Exchange  extended 
with a metainterface as a static component spec  is as 
follows: 
class Exchange implements java.io.Serializable {  
 static String[] spe c = {  
  "currency, localCurrency : String",  
  "exchangeRate : float",  
  "currency,localCurrency - > 
     exchangeRate{getExchangeRate}",  
  " - > localCurrency {getLocalCurrency}"  
  " - > (Exchange) {Exchange}"  
 };  
 float getExchangeRate(String currency,  
    Stri ng localCurrency) {…}  
 String getLocalCurrency() {…}  
}  

A metainterface can be used as well for specifying how 
an application should be composed from components that 
are supplied with metainterfaces. In the latter case, a new 
class can be built completely from a specification of its 
metainterface. For this purpose, specifying equality 
relations between some interface variables of the new class 
may be needed. An extended example of the usage of 
metaclasses is presented in the section Example. Here we 
present a metaclass for calculating exchange rates that uses 
another metaclass as a component. 
class ExchangeRate implements java.io.Serializable {  
 static String[] spec = {  
  "currency : String",  
  "exchangeRate : float",  
  "exch : Excha nge",  
  "exch.currency = currency",  
  "exch.exchangeRate = exchangeRate",  
 };  
}  

The class ExchangeRate  can be used for several 
purposes. The actual usage will be determined by a goal. 
Goals can have different forms, for instance, 
ExchangeRate| - currency - >ex changeRate  gives a 
program for computing the exchangeRate  of a given 
currency  and the local currency. The following definition 
of the method implementing the given goal is fully 
automatically built for the class ExchangeRate , and the 
name spec_1  is automatically generated for it. 
Realization of currency - > exchangeRate {spec}  
float spec_1 (String currency) {  
 Exchange ExchangeRate_exch_obj = null;  
 ExchangeRate_exch_obj = new Exchange();  
 String ExchangeRate_exch_localCurrency = null;  
 ExchangeRate_exch_loc alCurrency =  
   ExchangeRate_exch_obj.getLocalCurrency();  
 float ExchangeRate_exchangeRate = 0;  
 ExchangeRate_exchangeRate =  
  ExchangeRate_exch_obj.getExchangeRate(currency,  
     ExchangeRate_exch_localCurrency);  
 return(ExchangeRate_exchangeRate);  

}  

The number of possible different computations 
described by a class or an interface is the number of its 
methods. Using metainterfaces, a user gives a goal of 
computation, and names data items to be computed or 
given as arguments. This enhances flexibility in two ways: 
first, the number of possible computations is at least the 
number of available methods, but can be much larger and 
often is. Second, component deployment does not require a 
user to know names of methods. For example, in Java one 
has to compose streams from a large number of classes for 
programming input and output. It is easy to build a new 
class InputOutput  including streams as components 
and with a metainterface that will enable one to do the 
composition of streams automatically. To specify some 
input or output in a program, one has to give a goal, e.g. to 
put a string into a file one can write 

InputOutput | -  stringValue, filename - > file  

that can be read as “take stringValue  and filename  
and create file  using the class InputOutput ”.  



 

General Scheme of Synthesis of Classes 

We are using a concept of metaclass in order to 
distinguish a class supplied with a metainterface from a 
conventional class. In principle, it is unimportant, whether 
the metaclass is considered as one single text or its 
metainterface part is kept separately like different parts of 
a Java bean. In our implementation we keep the 
specification of a class as a component of the class in the 
form of an array of strings. This allows us to implement a 
metaclass as a regular Java class. 

Our language of specifications has a straightforward 
translation into a restricted first-order constructive logic 
(see section Logical Semantics of Specifications). Axioms 
have a realization given by a method of the class to whose 
specification the construction belongs. In particular, an 
implication like - >localCurrency may have a n 
implementation in the form of a method, e.g. 

String getLocalCurrency() .  

Then we denote it in the specification by showing a name 
of the respective methhod in curly brackets: 

- > localCurrency {getLocalCurrency}  

Development of a synthesized primary class C proceeds 
as follows. One writes a specification of a new metaclass, 
using existing metaclasses, and also writes a top-level goal 
in the form of an implication P- >R where P is precondition 
and R is postcondition of the main method of the new class 
to be synthesized. So, the goal is to find a realization for 
the implication P- >R in the form of a new method of the 
new class C. This is achieved by a conventional scheme of 
the deductive program synthesis: derive P- >R using logical 
formulae of specifications as specific axioms, and extract 
the realization of the goal from its derivation, see (Manna 
and Waldinger 1992). The realization of the goal is 
executed in the method main  of the class C. New subgoals 
may appear during this derivation, hence, more methods of 
the class C may be synthesized completely automatically. 
Also instance variables of the new class may be 
introduced. In particular, any proposition with the meaning 
“the interface variable x  has a correct value” may get a 
realization as an instance variable of the new class. 
Summarizing this section we can say the following: 

� We compose specifications manually and synthesize 
software automatically in the form of new classes 
using the composed specifications. 

� Software components are metaclasses, each of which 
includes two parts: 1) a realization in the form of an 
ordinary OO class, and 2) a metainterface, i.e. a 
specification that describes the possible computational 
usage of methods of this class. 

� Correctness of the realization of a component with 
respect to its specification has to be guaranteed by the 
developer of the component. 

� Correctness of the synthesized class with respect to its 
specification is guaranteed by the correct 
implementation of the synthesizer. 

Specification Language 

Our aim in designing the specification language has been 
to make it as convenient as possible for a software 
developer. This language should allow a simple and exact 
translation into a language of logic used in the synthesis 
process, but we have tried to avoid excessive use of logical 
notations. The following design decisions have been made. 

� We have separated interface variables from instance- 
and class variables (attributes of classes). This gives 
flexibility to specifications and enables one to specify 
existing classes developed  initially without 
considerations about their appropriateness for 
synthesis. Moreover, by separation of interface 
variables from attributes of metaclasses the creation of 
new side effects is avoided. 

� Inheritance is supported in specifications, but without 
overriding in the specification part. This may cause 
inconsistencies, if an implementation of some relation 
is overridden. Fortunately, this situation can be 
detected automatically by introspection of classes. 

Core of the Language 
Specification of an interface variable is a declaration of 
the form <identifier>:<specifier> , where the 
identifier is a name of the new variable declared, and the 
specifier is one of the following phrases: 

� Any of the primitive types of the underlying OO 
language, int , float  for instance 

� A class name or a metaclass name. 
It denotes that, if the variable is used in computations, it 
will require a realization as an instance variable of the 
given type. 

Binding is an equality of the form <namel >=<name2> 
denoting that realizations of the two interface variables 
must have equal (may be partial) values. By the partial 
values we mean that even if only some subcomponent of 
the variable given by namel  has a value, the respective 
subcomponent of the other variable has the same value and 
vice versa. 

Name may be an identifier or a compound name, e.g. 
a.b.c  denoting the component c  of the component b of 
the interface variable a. 

Our aim is to support compositional software 
development and to enable one to specify new software by 
synthesizing it from specifications that do not include other 
declarations than component specifications and bindings, 
where components are represented by interface variables of 
suitable classes. The experience shows that one has to be 
able to add some “glue” to components – by adding new 
relations that bind them. This can be done by manually 



 

programming some methods of the new class and 
specifying them by means of axioms. The axioms are used 
also for specifying classes that have a role of components. 
In this case, the aim is to specify all computational 
possibilities that a class provides. 

Axiom is a logical formula specifying in some way the 
possibilities of computing provided by methods of the 
class. The concrete syntax of axioms depends on the logic 
used for program synthesis. Here and in the examples we 
shall use the logic implemented in (Lämmermann 2000). 
Here an axiom is a declaration of computability in the form 
of an implication with a list of preconditions separated by 
commas interpreted as conjunction symbols on its left-
hand side and postconditions on its right -hand side, 
followed by its realization – a method or constructor name 
in curly brackets, e.g. 

currency, localCurrency - > 

exchangeRate {getExchangeRate}  (1) 

An axiom states that the method can be applied, if all its 
preconditions are derivable. Postconditions are separated 
by commas as conjunction symbols, and by disjunction 
symbols |. Postconditions are interface variables or 
propositional variables taken in square brackets. The 
meaning is that if a postcondition is derivable then the 
variable with this name is computable. Disjunc tion 
specifies a possibility of alternative results of computation, 
e.g. 

amount, currency, [currency - >exchangeRate] - > 

[debit_t] | exception {debit}  (2) 
� A precondition is either an interface variable or a 

logical formula in square brackets. In this way we 
keep the language logically extensible — new forms 
of formulae can be used in square brackets. At present, 
a formula in square brackets can be just a 
propositional variable or an implication with lists of 
interface variables on its left- and right -hand sides. 
The semantics of preconditions is the following: 

� A precondition in the form of an interface variable 
means that a value of this variable must be 
computable. 

� A precondition in the form of an implication denotes a 
subgoal: computing values for the interface variables 
on its right -hand side from given values of the 
interface variables on its left-hand side. We call this a 
subtask. Realization of a subtask is a synthesized 
method. 

� A precondition in the form of a propositional variable 
in square brackets does not have any computational 
meaning, but must be derivable when the axiom is 
used in a proof. 

The specification (2) uses the propositional variable 
[debit_t]  and interface variable exception  in 
postconditions. The method debit  may throw an 
exception. This is specified by the disjunct exception  in 
postconditions. The specification (2) asserts that if the 

method debit  does not throw an exception  then the 
transaction to debit the bank account associated with the 
current computation was successful. 

Realization of an axiom is a method or constructor of 
the class to which the specification belongs. Input 
parameters of the realization are associated with its 
preconditions positionally. For instance, the realization of 
currency  of the specification (1) is passed as the first 
parameter to the method getExchangeRate and  the 
realization of localCurrency  as the second parameter. 
Realization of a subtask is passed as an object that 
implements an interface called Subtask  that has a 
synthesized method subtask  for solving the subtask. For 
instance, the realization of the subtask specified by 
[currency - >exchangeRate]  of the method debit  of 
the specification (2) will be passed to the method debit  as 
object of type Subtask . 

Extensions 
We have introduced several extensions to th e core 
language. Here we consider two of them. The first 
concerns first-order features and requires extending the 
logic of axioms, all other extensions can be translated into 
the logic of the core language. 

Metavariables as pre - and postconditions. A 
metavariable (Q)  as a precondition is satisfied if any 
object of the class Q is found. A metavariable as a 
postcondition denotes that an object of the given class Q 
will be computed. Instead of a component name we use a 
class name in parentheses in this case, e.g. 

no - > (Account) | (Exception) {getAccount}  (3) 

amount,currency,[currency - >exchangeRate] - > 

[debit_t]|(Exception) {debit}  (4) 

The second disjunct of both specifications is the 
metavariable (Exception) . The formula that specifies the 
method debit  is the same as we used before in (2), but the 
interface variable exception  has been replaced with the 
metavariable (Exception) . Both specifications state that 
exception handling must be provided by some other 
metaclass, which is detected automatically during synthesis 
if a suitable metaclass for exception handling exists. In our 
example we shall use the following metaclass for handling 
exceptions: 
class ExceptionHandler {  
 static String[] spec = {  
  "(Exception) - > [any] {handleException}"  
 };  
 static void handleEx ception(Exception e) {…}  
}  

This metaclass provides a method that takes as input 
any object of class Exception . The method 
handleException  displays an error message depending 
on the given exception. The propositional variable [any]  
in the postcondition of t he specification of method 
handleException  can be used outside this metaclass to 



 

specify logic of computations after exception handling. For 
instance, the binding (as used in the metaclass Account , 
which we shall describe in section Logical Semantics of 
Specifications) 

[debit_t] = [ExceptionHandler.any]  

specifies that realizability of the propositional variable 
[debit_t]  is the same as realizability of the propositional 
variable any  of the metaclass ExceptionHandler . This 
binding is needed to handle exceptions in a logically sound 
way. 

Equations. The synthesizer and the run -time 
environment support the usage of linear  equations in 
calculations. We have experience in using the equations in 
earlier synthesizers (Tyugu 1996) and find this feature very 
convenient for gluing together components. 

Instance value  is a special concept needed for 
distinguishing an instance of a metaclass from a structure 
composed from realizations of all its interface variables. 
We write x.obj  instead of x  to denote that a value 
computed for the interface variable x  is an instance of the 
class of x , but not the structure constructed from its 
instance variables. The name obj  is a keyword of the 
specification language. For examples we refer to the 
definition of method spec_1  in section Specifications as 
Metainterfaces and to the example in section Example. 

Logical Semantics of Specifications 

We implemented initially the same semantics of 
specifications that was in the PRIZ and NUT systems 
(Mints and Tyugu 1982) (Mints 1991) and were able to use 
the structural synthesis of programs (SSP) as described 
already in (Tyugu 1996). This guaranteed good scalability 
and high performance of the synthesis. However, the logic 
of SSP was too restricted for expressing some important 
properties of Java programs, first of all – throwing 
exceptions. Second, context-awareness that is an important 
feature of the synthesis of services required another 
extension – introduction of predicates that describe the 
appropriateness of some computable objects for binding 
independently developed components. Therefore we have 
extended the logic with disjunctions and metavariables. 
Here we are going to  describe the translation  of 
constructions of the specification language into a language 
of logic and then outline  the usage of the logic in the 
program synthesis process. 

Structural properties  of objects are represented in our 
logic computationally. We avoid the usage of description 
logic (Premkumar, Devanbu, and Jones 1994) for 
representing structures, although it has been designed for 
this purpose. In this way we keep the control over proof 
search and preserve its high performance. The semantics of 
a metainterface X having interface variables x1,…,x k is 
expressed computationally by the axioms X - > x1, …, x k 
and x1, …, xk - > X where identifiers denote the 

computability of variables with the same names. (This 
conforms to our usage of names of variables in axioms in 
section Specification Language.) These formulae express 
that the structural value i s computable when all its 
components are given, and vice versa - all its components 
are computable when the structural value itself is known. 
Besides that, we have to take into account the structures 
when equalities are present. In the case of equality of two 
structures, e.g. x=y  (x:X , y:X ) we have to be able to infer 
the computability of any of the components of any of them 
as soon as a respective component of the other is given. An 
easy way to guarantee this property in our logic is to 
unfold the equality explicitly for all components, i.e. to 
write automatically x.z=y.z  for all components z of x  
and y . 

Axioms written in a specification are translated into 
logic in a straightforward way. They are implications with 
preconditions on the left and postconditions on the right 
side. If a method may throw an exception, then it is 
described by an implication with disjunction on its right 
side. One disjunct specifies normal execution and the other 
– throwing an exception, e.g. 

url - > (Bank) | (Exception) {Naming.loo kup}  

Handling disjunctions requires introduction of a new 
search strategy – search of proof of the innermost goal. 
This extension is thoroughly described in (Lämmermann 
2000). As we have said it earlier, the nested implications 
are subtasks. The general form of an axiom for a method 
or constructor with m subtasks, n input variables, s  output 
variables and throwing exceptions is: 

(u 1,1 ∧…∧u1,k1  - > v 1) ∧ … ∧(u m,1∧…∧um,km - > v m) ∧ 
x1∧…∧xn - > y 1 ∧… ∧ ys∨z 

Metavariables are translated into the logic with 
quantifiers: as a universal quantifier among the 
preconditions and an existential quantifier among the 
postconditions. Examples are as follows: 

�
(C) ∧x- >y  gives ∀w(C(w) ∧x- >y)  

�
u- >v∧(C)  gives u- >v∧∃wC(w) . 

Inheritance is straightforward – all axio ms of a 
superclass are added to the axioms of the class. 
Metainterfaces of Java classes and Java interfaces are 
handled in one and the same way. This leads to multiple 
inheritance in metainterfaces. 

Unfolding is used for representing the semantics of 
interface variables whose type is specified by a metaclass. 
Let us consider the metaclass ExchangeRate  described in 
section Specifications as Metainterfaces. Its logical 
semantics is expressed by a collection of formulae. If a 
new interface variable exchR:ExchangeRate  is specified 
(as it is in the class Account  shown below), then these 
formulae are explicitly inserted into the logical 
specification and prefix exchR  is added to all names in 
these formulae. This  leads to expansion of the 
specification, but avoids excessive usage of universal  



 

quantifiers. An example is a  Java remote interface 
Account : 
interface Account extends java.rmi.Remote {  
 static String[] spec = {  
  "amount : int", "currency : String",  
  "exchangeRate : float", "exch : Exchange",  
  "exch.localCurrency = currency",  
  "exchR : ExchangeRate",  
  "exchR.currency = currency",  
  "exchR.exchangeRate = exchangeRate",  
  "[debit_t] = [ExceptionHandler.any]",  
  " amount,currency,[currency - >exchangeRate] - > 
      [debit_t]|(Exception) {debit}"  
 };  
 void debit(int amount,String currency,Subtask sub)  
   throws RemoteException;  
}  

The metaclass Account  we have presented here 
provides a remote transaction debit  to debit an account. 
Its metainterface declares five interface variables: amount , 
currency , exchangeRate , exch , and exchR . We use the 
propositional variable [debit_t]  to specify the final state 
of a complete transaction that involves the method debit  
and exception handling. The binding 
[debit_t]=[ExceptionHandler.any]  is needed to 
synthesize a branch for handling exception. Let us use 
Account  to illustrate the change in specifications if we 
unfold this metaclass. The first prefix to be added to all 
names of interface variables and propositional variables 
(excluding metavariables) is the name of the metaclass, 
which is Account . For instance, all occurrences of the 
interface variable amount  become Account.amount . The 
axiom specifying the method debit  is replaced by: 

Account.amount,Account.currency,  
[Account.currency - >Account.exchangeRate] - > 

[Account.debit_t] | (Exception)  etc. 

Metavariables are left unchanged, e.g. (Exception)  
remains as it is. The unfolding is done hierarchically, if 
needed. Hence, long compound names occur. We use 
compound names also in generated source code, but 
substitute an underscore (_) for a dot (.)  in a compound 
name in order to conform to the Java programming 
language syntax, for instance, see automatically built 
method spec_1  described above. 

Java classes may have instance methods and class 
methods. Class methods are invoked on a class, not on an 
instance. Our specification language does not reflect this 
fact. Fortunately, we can gather information about methods 
by introspection of classes while unfolding, and call an 
appropriate constructor of a class first and create its 
instance, if its instance methods are used in a synthesized 
program. 

Example 

The example is synthesis of a transaction program 
implemented in a distributed way using Java RMI. The 
program implements a service — debiting a bank account. 
The metaclasses needed for specifying this service are 

Bank , Account , Exchange , ExchangeRate , and 
ExceptionHandler . Fortunately, we have already 
specified these metaclasses except Bank . The metaclass 
Bank  is a remote interface: 
interface Bank extends java.rmi.Remote {  
 static String[] spec = {  
  "no : long",  
  "url : String",  
  "url - > (Bank) | (Exception) {Naming.lookup}",  
  "no - > (Account) | (Exception) {getAccount}",  
 };  
 Acco unt getAccount(long no) throws RemoteException;  
}  

The metaclass Bank  we present here provides only one 
remote method getAccount , but reuses the class method 
lookup  of the class Naming . The method lookup  is used 
to obtain a remote reference to a bank object  that is 
associated with a given url  (Uniform Resource Locator). 
This remote reference is then used to obtain a remote 
reference (by invoking the method getAccount  on it) to 
an account object that is connected to a given account 
number no. Having access to an account object we can 
debit the corresponding account by invoking the method 
debit  on the remote reference if we can solve the sub-
problem to calculate the exchangeRate  of the local 
currency and the currency of the location of the bank. 
Some methods of our metaclasses may throw an exception, 
which is specified by using disjunction in the 
postconditions of the specifications of the respective 
methods. Due to disjunction, we have to solve additional 
sub-problems that take over the computation in case of 
exception. 

It is our goal to derive a program to debit an account at 
a bank. The input for this program is the url  of a bank, the 
account number no, and the amount  of how much the 
respective account should be debited. To synthesize this 
program we state the following goal: 

Bank, Account | -  Bank.url, Bank.no, Account.amount - > 
[Account.debit_t]  

The list of metaclasses ( Bank, Account ) of the 
antecedent of this goal does not contain all metaclass that 
are needed to synthesize our program. The synthesis 
involves also metaclasses Exchange , ExchangeRate , and 
ExceptionHandler . The deployment of the metaclass 
ExceptionHandler  is implicitly specified by the 
metavariable (Exception), where the deployment of the 
metaclasses Exchange  and ExchangeRate  is explicitly 
specified in metainterfaces. 

After unfolding the metainerfaces of our metaclasses we 
obtain a flat representation of all formulae that specify 
methods and constructors of classes. The list of all needed 
formulae, after unfolding, is the following: 



 

Exchange  
C1 �  - > (Account.exch.obj)  

getLocalCurrency  
C2 �  [(Account.exch.obj)] - > 
  Account.exch.localCurrency  

ExchangeRate  
C3 �  - > (Account.exchR.obj)  

spec_1  
C4 �  [(Account.exchR.obj)],  
  Account.exchR.currency - > 
  Account.exchR.exchangeRate  

handleException  
C5 �  (Exce ption.obj) - > [Exception.any]  

Naming.lookup  
C6 �  Bank.rul - > (Bank.obj)|(Exception.obj)  

getAccount  
C7 �  [(Bank.obj)],Bank.no - > 
  (Account.obj)|(Exception.obj)  

debit  
C8 �  [(Account.obj)],Account.amount,  
  Account.currency,[S] - > 
  [Account.debit_t]|(Except ion.obj)  

S �  Account.currency - > Account.exchangeRate  

E1 �  [Account.debit_t]=[Exception.any]  

E2 �  Account.exch.localCurrency=Account.currency  

E3 �  Account.exchR.currency=Account.currency  

E4 �  Account.exchR.exchangeRate=Account.exchangeRate  

Each implication specifies input/output conditions of a 
component C1, …, C8 (which encapsulate a method or a 
constructor). For convenience we have named the bindings 
by E1, …, E4. We replaced the subtask specification of the 
formula that specifies component C8 by the proposition S, 
where S is a formula. The schema in Figure 1 depicts our 
synthesized transaction program. 
 

Figure 1. Program schema. 

 
Each box represents a component. Arrows leading from 

one component to another represent da taflow in 
computation and component composition in synthesis. 

Figure 2. Subtask schema. 

 
The component debit  receives as input the subtask S, 

which calculates the exchange rate. A separate schema, 
Figure 2, presents the subtask S. 

Concluding Remarks 

On the practical side, early Java environments suffered 
from the difficulties in the reuse of classes (first of all, 
related to GUI). As a result, JavaBeans were introduced. 
This was followed by the introduction of Enterprise Java 
Beans (EJB) as components of domain -oriented 
applications. In both cases, classes were supplied with 
additional information, and mechanisms (e.g. beanboxes) 
were developed for using this information. The practicality 
of program synthesis, not especially related to object -
oriented software development, has been demonstrated by 
several software development systems, e.g. (Blaine et al. 
1998) (Stickel et al. 1994). 

We introduce an extension of classes that is supported 
by a domain -independent program synthesis technique, 
already tested in practice to some extent. As this work is 
performed in the context of a larger project Personal 
Computing and Communication (PCC), we  have a 
practical goal to apply our technique to just -in-time 
synthesis of services from preprogrammed components. In 
this work we use a logic and a specification language close 
to those that have been tested in practice (Tyugu, Matskin, 
and Penjam 1999). The logic is expressive enough for 
describing, first, structure of hierarchical configurations, 
second, dataflow between the components, and third, 
mutual needs of the components of a service – bindings 
between objects of separately implemented components. 
The proposed composition model uses a logical proof as a 
justification of correct deployment of components in the 
context of their use. We are well aware of tradeoffs 
between the expressiveness and efficiency of automatic 
usage of logic, and have chosen in some sense minimal 
logic that is still universal, i.e. enables us in principle to 
specify any computable function. This gives the efficiency 
of search needed in the composition process. 

In the systems of structural synthesis (Tyugu, Matskin, 
and Penjam 1999) (Tyugu 1996) the potential components 
must be explicitly visible from specifications (after 
unfolding a specification), and selection of components 
actually included into a synthesized program is performed 
on the basis of higher -order dataflow. This is very  

C1 

C2 

C5 

C6 

C7 

C8 

Bank.url

Bank.no

Bank.amont

(Bank.obj)  

(Account.obj)  

( Account.exch.obj )  

 E2  

Account.debit_t  

 E1  

(Exception.obj)  

S 

C3 

C4 

( Account.exchR.obj )  

E3 E4 



 

restrictive in the case of synthesis of services, because of 
changing context of a service, but it facilitates the proof 
search. In the present work, we have extended the logic by 
introducing metavariables in such a way that components 
of synthesized software can be selected without explicit 
reference to them. One has to circumscribe, however, the 
context where the search of components is performed in 
every particular case. In other words, one must be able to 
decide for each metaclass, whether this metaclass may be 
used in the synthesized service. This process is not 
supported by our system. We hope to use our synthesis 
together with the component selection method proposed in 
(Penix and Alexander 1997) using the latter for the 
preselection of potential comp onents and using our 
synthesis for adaptation and binding the selected 
components. 

Some words have to be devoted to the performance of 
the synthesizer. The performance of compilation is not 
critical. Support of introspection and dynamic compilation 
of classes in Java has helped the implementation. Some 
experimental performance evaluation can be found in 
(Lämmermann 2000). The critical phase is proof search. 
Here we can partially rely on the experience of the 
structural synthesis. In particular, if one does not use 
metavariables, the performance is as good as for the 
structural synthesis, and programs including thousands of 
steps can be synthesized in a reasonable time, see (Tyugu, 
Matskin, and Penjam 1999). When metavariables are used, 
one has to restrict th e search space by preselection of 
candidate components, and here we intend to use methods 
developed in (Penix and Alexander 1997) as we have noted 
it above. The logic of specifications can be extended 
without significant changes of the specification language. 
However, a more expressive logic may create more 
difficulties with the performance of proof search. 

Implementation of the developed language is still 
continuing. In particular, one can solve only linear 
equations at present, although experience with the NUT 
system has given us sufficient know-how for implementing 
more elaborate equation solvers. Also work is going on 
with the aim of adding a visual interface (a scheme editor) 
for supporting visual development of metainterfaces. 

Our practical application experience is still limited, but 
we have experimentally synthesized software for a context 
aware printing service, file downloading and uploading, 
composing streams, and for a bank transaction services 
(Lämmerman and Tyugu 2001). One part of the latter, 
debiting an account at a bank, has been presented in this 
paper. 
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